The Satake isomorphism for special maximal parahoric Hecke algebras
نویسندگان
چکیده
منابع مشابه
The Satake Isomorphism for Special Maximal Parahoric Hecke Algebras
Let G denote a connected reductive group over a nonarchimedean local field F . Let K denote a special maximal parahoric subgroup of G(F ). We establish a Satake isomorphism for the Hecke algebra HK of K-bi-invariant compactly supported functions on G(F ). The key ingredient is a Cartan decomposition describing the double coset space K\G(F )/K. We also describe how our results relate to the trea...
متن کاملOn the Satake Isomorphism
In this paper, we present an expository treatment of the Satake transform. This gives an isomorphism between the spherical Hecke algebra of a split reductive group G over a local field and the representation ring of the dual group Ĝ. If one wants to use the Satake isomorphism to convert information on eigenvalues for the Hecke algebra to local L-functions, it has to be made quite explicit. This...
متن کاملOn Satake Parameters for Representations with Parahoric Fixed Vectors
This article, a continuation of [HRo], constructs the Satake parameter for any irreducible smooth J-spherical representation of a p-adic group, where J is any parahoric subgroup. This parametrizes such representations when J is a special maximal parahoric subgroup. The main novelty is for groups which are not quasi-split, and the construction should play a role in formulating a geometric Satake...
متن کاملThe Base Change Fundamental Lemma for Central Elements in Parahoric Hecke Algebras
Let G be an unramified group over a p-adic field F , and let E/F be a finite unramified extension field. Let θ denote a generator of Gal(E/F ). This paper concerns the matching, at all semi-simple elements, of orbital integrals on G(F ) with θ-twisted orbital integrals on G(E). More precisely, suppose φ belongs to the center of a parahoric Hecke algebra for G(E). This paper introduces a base ch...
متن کاملThe Hecke category (part II—Satake equivalence)
Theorem 1. The convolution ∗ admits a commutativity constraint making Sph into a rigid tensor category. There exists a faithful, exact tensor “fiber” functor Sat : Sph → Vect inducing an equivalence (modulo a sign in the commutativity constraint) of Sph with Rep(G) as tensor categories, where G is the Langlands dual group of the reductive group G, whose weights are the coweights of G and vice v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Representation Theory of the American Mathematical Society
سال: 2010
ISSN: 1088-4165
DOI: 10.1090/s1088-4165-10-00370-5